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Abstract

We propose new weak error bounds and expansion in dimension one for optimal
quantization-based cubature formula for different classes of functions, such that
piecewise affine functions, Lipschitz convex functions or differentiable function
with piecewise-defined locally Lipschitz or α-Hölder derivatives. These new
results rest on the local behaviours of optimal quantizers, the Lr-Ls distribu-
tion mismatch problem and Zador’s Theorem. This new expansion supports
the definition of a Richardson-Romberg extrapolation yielding a better rate of
convergence for the cubature formula. An extension of this expansion is then
proposed in higher dimension for the first time. We then propose a novel vari-
ance reduction method for Monte Carlo estimators, based on one dimensional
optimal quantizers.
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Introduction

Optimal quantization was first introduced in [She97], Sheppard worked on optimal quantization of
the uniform distribution on unit hypercubes. It was then extended to more general distributions
with applications to Signal transmission at the Bell Laboratory in the 50’s (see [GG82]) and then
developed as a numerical method in the early 90’s, for expectation approximations (see [Pag98])
and later for conditional expectation approximations (see [PPP04, BPP01, BP03, BPP05]).

In modern terms, vector quantization consists in finding the projection for the Lp-Wasserstein
distance of a probability measure on Rd with a finite p-th moment on the convex subset of Γ-
supported probability measure, where Γ is a finite subset of Rd and 0 ă p ă `8. The aim
of Optimal Quantization is to determine the set ΓN :“ txN1 , . . . , x

N
Nu Ă R

d with cardinality at
most N which minimizes this distance among all such sets Γ. Formally, if we consider a random
vector X P LppPq, we search for ΓN , the solution to the following problem

min
ΓNĂR,|ΓN |ďN

}X ´ pXΓN }p
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where pXΓN denotes the projection of X onto ΓN (often pXΓN is denoted by pXN in order to
alleviate the notations). The term }X ´ pXΓN }p is often referred to as the distortion of order
p. The existence of an optimal quantizer at a given level N has been shown in [GL00, Pag98]
and in the one-dimensional case if the distribution of X is absolutely continuous with a log-
concave density then there exists a unique optimal quantizer at level N . In the present paper
we will consider one dimensional optimal quantizers. Moreover, we are not only interested by
the existence of such a quantizer but also in the asymptotic behaviour of the distortion because
it is an important feature for the method in order to determine the level of the error introduced
by the approximation. The question concerning the sharp rate of convergence of }X ´ pXN}p
as N goes to infinity is answered by Zador’s Theorem. For X P Lp`δpPq, δ ą 0, such that
PX pdξq “ ϕpξq ¨λpdξq` νpdξq, where ν K λ is the singular component of PX with respect to the
Lebesgue measure λ on Rd, the rate of convergence is given by

lim
NÑ`8

N
1
d }X ´ pXN}p “

rJp,d

„
ż

Rd
ϕ

d
d`pdλd


1
p
` 1
d

where ϕ is the density of X, λd is the Lebesgue measure on Rd and rJp,d “ infNě1N
1
d }U ´

pUN}p , U
L
„ U

`

p0, 1qd
˘

. For more insights on the mathematical/probabilistic aspects of Optimal
quantization theory, we refer to [GL00, Pag15].

The reason for which we are interested in this optimal quantizer is numerical integration. The
discrete feature of the optimal quantizer pXN allows us to define, for every continuous function
f : Rd ÝÑ R, such that fpXq P L2pPq, the following quantization-based cubature formula

E
“

fp pXN q
‰

“

N
ÿ

i“1

pifpx
N
i q

where pi “ Pp pXN “ xNi q. Indeed, as pXN is constructed as the best discrete approximation of X
in LppPq, it is reasonable to approximate E

“

fpXq
‰

by E
“

fp pXN q
‰

which is useful for numerical
integrations problems.

The problem of numerical integration appears a lot in applied fields, such as Physics, Com-
puter Sciences or Numerical Probability. For example, in Quantitative Finance, many quantities
of interest are of the form

E
“

fpStq
‰

for some t ą 0,

where f : Rd ÝÑ R is a Borel function and pSsqsPr0,ts is a diffusion process solution to a Stochastic
Differential Equation (SDE)

St “ S0 `

ż t

0
bps, Ssqds`

ż t

0
σps, SsqdWs, S0 “ s0,

where W is a standard Brownian motion living on a probability space pΩ,A,Pq and b and σ are
Lipschitz continuous in x uniformly with respect to s P r0, ts, which are the standard assumptions
in order to ensure existence and uniqueness of a strong solution to the SDE. Since it is often
impossible to compute E

“

fpStq
‰

directly, it has been proposed in [Pag98] to compute an optimal
quantizer pXN of X where X is a random variable having the same distribution as St and to use
the previously defined quantization-based cubature formula as an approximation.

Another approach, often used in order to approximate E
“

fpXq
‰

, is to perform a Monte Carlo
simulation pIM :“

řM
m“1 fpX

mq, where pXmqm“1,...,M is a sequence of independent copies of X.
The method’s rate of convergence is determined by the strong law of numbers and the central
limit theorem, which says that if X is square integrable, then

?
M

´

pIM ´ E
“

fpXq
‰

¯

L
ÝÑ N

`

0, σ2
fpXq

˘

as M Ñ `8
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where σ2
fpXq “ Var

`

fpXq
˘

. One notices that, for a given M , the limiting factor of the method
is σ2

fpXq. Hence, a lot of methods have been developed in order to reduce the variance term:
antithetic variables, control variates, importance sampling, etc. The reader can refer to [Pag18,
Gla13] for more details concerning the Monte Carlo methodology and the variance reduction
methods.

In this paper we propose a novel variance reduction method of Monte Carlo estimator through
quantization. Our method innovates in that it uses a linear combination of one dimensional
control variates to reduce the variance of a higher dimensional problem. More precisely, we
introduce a quantization-based control variates ΞNk for k “ 1, . . . , d. If one considers a function
f : Rd ÞÑ R, we approximate E

“

fpXq
‰

by

E
“

fpXq ´ xλ,ΞNy
‰

with x¨, ¨y the scalar product in Rd and pΞNk qk“1,...,d :“ fkpXkq ´ E
“

fkp pX
N
k q

‰

, where Xk is the
k-th component of X, pXN

k is an optimal quantizer of Xk of size N and fk : R ÞÑ R is designed
from f . Looking closely at the introduced control variates, one notices that we introduce a
bias in the approximation. However, as since it is closely linked to weak error, this bias can be
controlled. The present paper focuses on the weak error’s rate of convergence.

First, we place ourselves in the case where X is a random variable in dimension one and we
consider a quadratic optimal quantizer. We work on the rate of convergence of the weak error
induced by the expectation approximation by an optimal quantization-based cubature formula
for different classes of functions f

lim
NÑ`8

Nα
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.

The first classical result concerns Lipschitz continuous functions. Using directly the Lipschitz
continuity property of f and Zador’s Theorem a rate of order α “ 1 can be obtained. Moreover,
if we consider the supremum among all functions with a Lipschitz constant upper-bounded by
1, then

N sup
rf s

Lip
ď1

ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ “ N}X ´ pXN}1 ď N}X ´ pXN}2
NÑ`8
ÝÝÝÝÝÑ Cf ă `8.

A faster rate (α “ 2) can be attained for differentiable functions with Lipschitz continuous deriva-
tive, using a Taylor expansion with integral remainder and the following stationarity property of
quadratic optimal quantizers

E
“

X | pXN
‰

“ pXN .

Moreover, considering the supremum among all functions where the Lipschitz constant of the
derivative is upper-bounded by 1, we have

N2 sup
rf 1s

Lip
ď1

ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰
ˇ

ˇ “
1

2
N2}X ´ pXN}2

2

NÑ`8
ÝÝÝÝÝÑ Cf ă `8

where the limit is given by Zador’s Theorem. A detailed summary about this results can be
found in [Pag18].

In the first part of this paper, we extend this improved rate (α “ 2) to classes of less smooths
functions in one dimension. These new results enable us to design efficient variance reduction
methods in higher dimensional settings with in view applications to option pricing. The new
results concerns the following classes of functions
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• Lipschitz continuous piecewise affine functions with finitely many breaks of affinity. We
use the stationarity property of the optimal quantizer on the cells where there is no break
of affinity and then we control the error on the remaining cells using results on the local
behaviour of the quantizer.

• Lipschitz continuous convex functions, using local behaviours results on optimal quantiz-
ers. We use a representation formula for convex functions as integrals of Ridge functions
combined with the local behaviour result in order to control the error again.

• Differentiable functions with piecewise-defined locally Lipschitz derivative. The functions
have K breaks of affinity ta1, . . . , aKu, such that ´8 “ a0 ă a1 ă ¨ ¨ ¨ ă aK ă aK`1 “ `8

and the locally Lipschitz property of the derivative is defined by

@k “ 0, . . . ,K, @x, y P pak, ak`1q |f 1pxq ´ f 1pyq| ď rf 1s
k,Lip,loc

|x´ y|
`

gkpxq ` gkpyq
˘

where gk : pak, ak`1q Ñ R` are non-negative Borel functions. We use the locally Lipschitz
property of the derivative combined with the Lr-Ls distortion Theorem and Zador’s The-
orem on the cells where there is no break of affinity and then we control the error on the
remaining cells using results on the local behaviour of the quantizer.

• Differentiable functions with piecewise-defined locally α-Hölder derivative. The functions
have K breaks of affinity ta1, . . . , aKu, such that ´8 “ a0 ă a1 ă ¨ ¨ ¨ ă aK ă aK`1 “ `8

and the locally α-Hölder property of the derivative is defined by

@k “ 0, . . . ,K, @x, y P pak, ak`1q, |f 1pxq ´ f 1pyq| ď rf 1s
k,α,loc

|x´ y|α
`

gkpxq ` gkpyq
˘

where gk : pak, ak`1q Ñ R` are non-negative Borel functions. For this class of functions,
the rate of convergence is of order 1`α. The result is obtained using the same ideas as in
the locally Lipschitz case.

Hence, for all this classes of functions, except the last one, we have

lim
NÑ`8

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.

In the second part of the paper we deal with the weak error expansion of the approximation
of E

“

fpXq
‰

by E
“

fp pXN q
‰

. First, we place ourselves in the one dimensional case by considering
a twice differentiable function f : R ÞÑ R with a bounded Lipschitz continuous second derivative
and X : pΩ,A,Pq Ñ R. Through a second order Taylor expansion and with the help of Corollary
1.8, Theorem 1.13 and the Lr-Ls distortion mismatch Theorem we obtain

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`OpN´p2`βqq

where β P p0, 1q. This expression suggests to use a Richardson-Romberg extrapolation in order
to kill the first term of the expansion which yields

E
“

fpXq
‰

“ E

«

M2fp pXM q ´N2fp pXN q

M2 ´N2

ff

`OpN´p2`βqq.

Second, we present a result in higher dimension when considering a twice differentiable function
f : Rd ÞÑ R with a bounded Lipschitz continuous Hessian, X : pΩ,A,Pq Ñ Rd with independent
components pXkqk“1,...,d and pXN a product quantizer of X with d components p pXNk

k qk“1,...,d
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such that N1 ˆ ¨ ¨ ¨ ˆNd » N . Using product quantizer allows us to rely on the one dimensional
results for quadratic optimal quantizers and in that case we have

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`

d
ÿ

k“1

ck
N2
k

`O

ˆ

´

min
k“1:d

Nk

¯´p2`βq
˙

.

The paper is organized as follows. First we recall some basic facts and deeper results about
optimal quantization in Section 1. In Section 2, we present our new results on weak error for
some classes of functions. Then, we see in Section 3 how to derive weak error expansion allowing
us to specify the right hypothesis under which we can use a Richardson-Romberg extrapolation.
Finally, we conclude with some applications. The first one is the introduction of our novel
variance reduction involving optimal quantizers. The last one illustrates numerically the results
shown in Section 2 and 3, by considering a Black-Scholes model and pricing different types of
European Options. We also propose a numerical example for the variance reduction.

1 About optimal quantization (d “ 1)

Let X be a R-valued random variable with distribution PX defined on a probability space
pΩ,A,Pq such that X P L2pPq.

Definition 1.1. Let ΓN “ tx
N
1 , . . . , x

N
Nu Ă R be a subset of size N , called N -quantizer. A Borel

partition
`

CipΓN q
˘

i“1,...,N
of R is a Voronoï partition of R induced by the N -quantizer ΓN if,

for every i “ 1, . . . , N ,

CipΓN q Ă
 

ξ P R, |ξ ´ xNi | ď min
j‰i

|ξ ´ xNj |
(

.

The Borel sets CipΓN q are called Voronoï cells of the partition induced by ΓN .

One can always consider that the quantizers are ordered: xN1 ă xN2 ă ¨ ¨ ¨ ă xNN´1 ă xNN and
in that case the Voronoï cells are given by

CkpΓN q “ px
N
k´1{2, x

N
k`1{2s, k “ 1, . . . , N ´ 1, CN pΓN q “ px

N
N´1{2, x

N
N`1{2q

where @k “ 2, . . . , N, xNk´1{2 :“
xNk´1`x

N
k

2 and xN1{2 :“ inf
`

supppPX q
˘

and xNN`1{2 :“ sup
`

supppPX q
˘

.

Definition 1.2. Let ΓN “ tx
N
1 , . . . , x

N
Nu be an N -quantizer. The nearest neighbour projection

ProjΓN : RÑ txN1 , . . . , x
N
Nu induced by a Voronoï partition

`

CipΓN q
˘

i“1,...,N
is defined by

@ξ P R, ProjΓN pξq :“
N
ÿ

i“1

xNi 1ξPCipΓN q .

We can now define the quantization of X by composing ProjΓN and X

pXΓN “ ProjΓN pXq “
N
ÿ

i“1

xNi 1XPCipΓN q

and the point-wise error induced by the replacement of X by pXΓN given by

|X ´ pXΓN | “ dist
`

X, txN1 , . . . , x
N
Nu

˘

“ min
i“1,...,N

|X ´ xNi |.
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In order to alleviate the notations, from now on we write pXN in place of pXΓN .

Definition 1.3. The L2-mean (or mean quadratic) quantization error induced by the replace-
ment of X by the quantization of X using a N -quantizer ΓN Ă R is defined as the quadratic
norm of the point-wise error previously defined

}X ´ pXN}2 :“

ˆ

E
”

min
i“1,...,N

|X ´ xNi |
2
ı

˙1{2

“

ˆ
ż

R

min
i“1,...,N

|ξ ´ xNi |
2PX pdξq

˙1{2

.

It is convenient to define the quadratic distortion function at level N as the squared mean
quadratic quantization error on pRqN :

Q2,N : x “ pxN1 , . . . , x
N
N q ÞÝÑ E

”

min
i“1,...,N

|X ´ xNi |
2
ı

“ }X ´ pXN}2
2
.

Remark 1.4. All these definitions can be extended to the Lp case. For example the Lp-mean
quantization error induced by a quantizer of size N is

}X ´ pXN}p :“

ˆ

E
”

min
i“1,...,N

|X ´ xNi |
p
ı

˙1{p

“

ˆ
ż

R

min
i“1,...,N

|X ´ xNi |
pPX pdξq

˙1{p

.

We briefly recall some classical theoretical results, see [GL00, Pag18] for further details.

Theorem 1.5. (Existence of optimal N-quantizers) Let X P L2pPq and N P N˚.

(a) The quadratic distortion function Q2,N at level N attains a minimum at an N -tuple xpNq “
pxN1 , . . . , x

N
N q and ΓN “ tx

N
i , i “ 1, . . . , Nu is a quadratic optimal quantizer at level N .

(b) If the support of the distribution PX of X has at least N elements, then xpNq “ pxN1 , . . . , x
N
N q

has pairwise distinct components, PX
`

Cipx
pNqq

˘

ą 0, i “ 1, . . . , N . Furthermore, the
sequence N ÞÑ infxPpRqN Q2,Npxq converges to 0 and is decreasing as long as it is positive.

Following the existence of a minimum for Q2,N at xpNq, we can define an optimal quadratic
N -quantizer.

Definition 1.6. A grid associated to any N -tuple solution to the above distortion minimization
problem is called an optimal quadratic N -quantizer.

A really interesting and useful property concerning quadratic optimal quantizers is the sta-
tionarity property.

Proposition 1.7. (Stationarity) Assume that the support of PX has at least N elements. Any
L2-optimal N -quantizer ΓN P pRqN is stationary in the following sense: for every Voronoï
quantization pXN of X,

E
“

X | pXN
‰

“ pXN .

Corollary 1.8. If pXN is a L2-optimal quantization of X, hence has the above stationarity
property, and fpXq P L2pPq with f : RÑ R then

E
“

fp pXN qpX ´ pXN q
‰

“ 0.

Proof. The proof is straightforward, indeed

E
“

fp pXN qpX ´ pXN q
‰

“ E
”

E
“

fp pXN qpX ´ pXN q | pXN
‰

ı

“ E
“

fp pXN qErX ´ pXN | pXN s
‰

“ E
”

fp pXN q
`

E
“

X | pXN
‰

´ pXN
˘

ı

“ 0.
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We now take a look at the asymptotic behaviour in N of the quadratic mean quantization
error. We saw in Theorem 1.5 that the infimum of the quadratic distortion converges to 0 as N
goes to infinity. The next Theorem, known as Zador’s Theorem, analyzes the rate of convergence
of the Lp-mean quantization error.

Theorem 1.9. (Zador’s Theorem) Let p P p0,`8q.

(a) Sharp rate. Let X P Lp`δpPq for some δ ą 0. Let PX pdξq “ ϕpξq ¨ λpdξq ` νpdξq, where
ν K λ is the singular component of PX with respect to the Lebesgue measure λ on R. Then

lim
NÑ`8

N min
ΓNĂR,|ΓN |ďN

}X ´ pXN}p “
rJp,1

„
ż

R

ϕ
1

1`pdλ

1` 1
p

with rJp,1 “
1

2ppp`1q .

(b) Non asymptotic upper-bound. Let δ ą 0. There exists a real constant C1,p,δ P p0,`8q
such that, for every R-valued random variable X,

@N ě 1, min
ΓNĂR,|ΓN |ďN

}X ´ pXN}p ď C1,p,δσδ`ppXqN
´1

where, for r P p0,`8q, σrpXq “ minaPR }X ´ a}r ă `8.

Now, we state some intuitive but remarkable results concerning the local behaviour of the
optimal quantizers.

Lemma 1.10. Let PX be a distribution on the real line with connected support IP
X

:“ supppPX q.
Let ΓN “ txN1 , . . . , x

N
Nu be a sequence of r-optimal quantizers, r ą 0. Let ra, bs, be a closed

interval then
ď

N

ď

CipΓN qXra,bs‰H

CipΓN q Ă K0

where K0 is a compact set.

Proof. First, if `8 R IP
X

then the upper-bound of K0 is the upper-bound of IP
X

otherwise if
`8 P IP

X
, let b0 P IP

X
such that b0 ă b, as PX has a density, then PX

`

tb0u
˘

“ PX
`

tbu
˘

“ 0.
Considering the weighted empirical measure

P
xXN

:“
N
ÿ

i“1

PX
`

CipΓN q
˘

δxNi
NÑ`8
ÝÝÝÝÝÑ PX

then P
xXN

`

rb0, bs
˘ NÑ`8
ÝÝÝÝÝÑ PX

`

rb0, bs
˘

ă PX
`

rb0,`8q
˘

. Moreover, one notices that

P
xXN

`

rb0, bs
˘

“ PX

¨

˝

ď

iPtib0 ,...,ibu

CipΓN q

˛

‚“ P
xXN

¨

˝

ď

iPtib0 ,...,ibu

CipΓN q

˛

‚

where xNiu is the centroid of the cell that contains u. Then, as rb0, xNib`1{2s Ă
Ť

iPtib0 ,...,ibu
CipΓN q

PX
`

rb0, x
N
ib`1{2s

˘

ď P
xXN

`

rb0, bs
˘ NÑ`8
ÝÝÝÝÝÑ PX

`

rb0, bs
˘

ă PX
`

rb0,`8q
˘

hence, lim supN x
N
ib`1{2 ă `8 and supN x

N
ib`1{2 ă `8, which gives us the upper-bound of K0:

supN x
N
ib`1{2.

Finally, if ´8 R IP
X

then the lower-bound of K0 is the lower-bound of IP
X

otherwise if
´8 P IP

X
, then following the same idea as above, we can apply the same deductions in order to

show that infN x
N
ia´1{2 ą ´8 which gives us the lower-bound of K0: infN x

N
ia´1{2. In conclusion,

K0 :“ supppPX q
Ş

rinfN x
N
ia´1{2, supN x

N
ib`1{2s.
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The next result, proved in [DFP04], deals with the local behaviour of optimal quantizer, more
precisely it characterises the rate of convergence, in function of N , of the weights and the local
distortions associated to an optimal quantizer. This is the key result of the first part of this
paper. It allows us to extend the weak error bound of order two to less regular functions than
those originally considered in [Pag98], namely differentiable functions with Lipschitz continuous
derivative.

Theorem 1.11. (Local behaviour of optimal quantizers) Let PX be a distribution on the real line
with connected support supppPX q. Assume that PX has a probability density function ϕ which is
positive and Lipschitz continuous on every compact set of the interior pm,mq of supppPX q. Let
ΓN “ tx

N
1 , . . . , x

N
Nu be a sequence of stationary and Lr optimal quantizers, r ą 0.

(a) The sequence of functions pψN qNě1 defined by

ψN pξq :“ N
N
ÿ

i“1

1CipΓN qpξqPX
`

CipΓN q
˘

, N ě 1,

converges uniformly on compact sets of pm,mq towards cϕ,1{pr`1qϕ
r
r`1 , with cϕ,1{pr`1q “

}ϕ}´1{p1`rq
1{p1`rq

i.e., for every ra, bs Ă pm,mq, a ă b,

sup
ti:xNi Pra,bsu

ˇ

ˇ

ˇ
N PX

`

CipΓN q
˘

´ cϕ,1{pr`1qϕ
r
r`1 pxNi q

ˇ

ˇ

ˇ

NÑ`8
ÝÝÝÝÝÑ 0. (1.1)

The local distortion is asymptotically uniformly distributed i.e., for every ra, bs Ă pm,mq,

sup
ti:xNi Pra,bsu

ˇ

ˇ

ˇ

ˇ

N r`1

ż

CipΓN q
|xNi ´ ξ|

r PX pdξq ´
}ϕ}

1{pr`1q

2rpr ` 1q

ˇ

ˇ

ˇ

ˇ

NÑ`8
ÝÝÝÝÝÑ 0. (1.2)

(b) Moreover, if PX has a compact support rm,ms and ϕ is bounded away from 0 on the whole
interval rm,M s, then all the above convergences hold uniformly on rm,ms.

The next result is a weaker version of Theorem 1.11 but it is a really useful tool when dealing
with weak error induced by quantization-based cubature formulas.

Corollary 1.12. Under the same hypothesis as in Theorem 1.11 and if 1 ď s ď r, we have the
following result, for every i P t1, . . . , Nu,

lim sup
N

N s`1

ż

CipΓN q
|xNi ´ ξ|

sPX pdξq “ lim sup
N

N s`1E
“

| pXN ´X|s 1
t pXN“xNi u

‰

ă `8.

Proof. If s “ 1, using Schwarz’s inequality

ż

CipΓN q
|xNi ´ ξ|PX pdξq ď

ˆ
ż

CipΓN q
|xNi ´ ξ|

2PX pdξq ¨ PX
`

CipΓN q
˘

˙
1
2

ðñ N2

ż

CipΓN q
|xNi ´ ξ|PX pdξq ď

ˆ

N3

ż

CipΓN q
|xNi ´ ξ|

2PX pdξq ¨N PX
`

CipΓN q
˘

˙
1
2

.

And applying Theorem 1.11 with PX “ ϕ ¨ λ and r “ 2, one derives

lim sup
N

N2

ż

CipΓN q
|xNi ´ ξ|PX pdξq ď

1

2
?

3

`

cϕ,1{3}ϕ}1{3}ϕ
2{3}8

˘
1
2 ă `8.
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Otherwise, for 1 ă s ă r, using Hölder’s inequality with p “ 1
s and q “ 1

1´s

ż

CipΓN q
|xNi ´ ξ|

sPX pdξq ď

ˆ
ż

CipΓN q
|xNi ´ ξ|

psPX pdξq

˙1{pˆż

CipΓN q
PX pdξq

˙1{q

ď

ˆ
ż

CipΓN q
|xNi ´ ξ|PX pdξq

˙s
´

PX
`

CipΓN q
˘

¯1´s

ðñ N s`1

ż

CipΓN q
|xNi ´ ξ|

sPX pdξq ď N s`1

ˆ
ż

CipΓN q
|xNi ´ ξ|PX pdξq

˙s
´

PX
`

CipΓN q
˘

¯1´s

ď

ˆ

N2

ż

CipΓN q
|xNi ´ ξ|PX pdξq

˙s
´

N PX
`

CipΓN q
˘

¯1´s
.

And using the result proved above for s “ 1 and (1.1), we obtain the desired result

lim sup
N

N s`1

ż

CipΓN q
|xNi ´ ξ|

sPX pdξq

ď lim sup
N

ˆ

N2

ż

CipΓN q
|xNi ´ ξ|PX pdξq

˙s
´

N PX
`

CipΓN q
˘

¯1´s

ď

ˆ

1

12
}ϕ}

1{3

˙
s
2
ˆ

cϕ,1{3}ϕ
2{3}8

˙1´ s
2

ă `8.

The following result will be useful in the last part of the paper, which is the Theorem 6 in
[DGLP04].

Theorem 1.13. Let pΓN qNě1 a sequence of optimal quantizers for PX . Then

lim
NÑ`8

N2E
“

gp pXN q|X ´ pXN |2
‰

“ Q2pPX q

ż

gpξqPX pdξq

for every function g : RÑ R such that E
“

gpXq
‰

ă `8, with Q2pPX q the Zador’s constant.

The last result we state is an answer to the following question: what can we say about the rate
of convergence of E

“

|X ´ pXN |2`β
‰

knowing that pXN is a quadratic optimal quantization? This
problem is known as the distortion mismatch problem and has been first addressed in [GLP08]
and the results have been extended in Theorem 4.3 of [PS18].

Theorem 1.14. [Lr-Ls-distortion mismatch] Let X : pΩ,A,Pq Ñ R be a random variable and
let r P p0,`8q. Assume that the distribution PX of X has a non-zero absolutely continuous
component with density ϕ, i.e. PX pdξq “ ϕpξq ¨ λpdξq ` νpdξq, where ν K λ is the singular
component of PX with respect to the Lebesgue measure λ on R and ϕ is non-identically null. Let
pΓN qNě1 be a sequence of Lr-optimal grids. Let s P pr, r ` 1q. If

X P L
s

1`r´s
`δ
pPq

for some δ ą 0, then
lim sup

N
N}X ´ pXN}s ă `8.
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2 Weak Error bounds for Optimal Quantization (d “ 1)

Let X P L2pPq and pXN a quadratic optimal quantizer of X which takes its values in the finite
grid ΓN “ tx

N
1 , . . . , x

N
Nu of size N . We consider a function f : RÑ R with fpXq P L2pPq. One

of the application of the framework developed above is the approximation of expectations of the
form E

“

fpXq
‰

. Indeed, as pXN is close to X in L2pPq, a natural idea is to replace X by pXN

inside the expectation

E
“

fp pXN q
‰

“

N
ÿ

i“1

fpxNi qPX
`

CipΓN q
˘

.

The above formula is referred as the quantization-based cubature formula to approximate E
“

fpXq
‰

.
Now, we need to have an idea of the error we make when doing such an approximation and what
is its rate of convergence as N tends to infinity? For that, we want to find the largest α P R,
such that the beyond limit is bounded

lim
NÑ`8

Nα
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8. (2.1)

The first class of function we consider is the class of Lipschitz continuous functions, more
precisely piecewise affine functions and convex Lipschitz continuous functions. Then we deal
with differentiable functions with piecewise-defined derivatives.

2.1 Piecewise affine functions

We improve the standard rate of convergence which is of order 1 for Lipschitz continuous functions
by considering a subclass of the Lipschitz continuous functions, namely piecewise affine functions.
This new result shows that the weak error induced is of order 2 (α “ 2 in (2.1)).

Lemma 2.1. Assume that the distribution PX “ ϕ ¨ λ of X satisfies the conditions of Theorem
1.11. Let f : RÑ R be a Borel function.

(a) If f is a continuous piecewise affine function with finitely many breaks of affinity, then
there exists a real constant Cf,X ą 0 such that

lim sup
N

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.

(b) However, if f is not supposed continuous but is still a piecewise affine function with finitely
many breaks of affinity, then there exists a real constant Cf,X ą 0 such that

lim sup
N

N
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.

Proof. Let I be a compact interval containing all the affinity breaks of f denoted a1, . . . , a`.

(a) Let f supposed to be continuous. Note that f is Lipschitz continuous (with coefficient
denoted rf sLip :“ maxi“1,...,` |ai|). Let ΓN “ tx

N
1 , . . . , x

N
Nu be an L2- optimal quantizer at level

N ě 1.

E
“

fpXq
‰

´ E
“

fp pXN q
‰

“

N
ÿ

i“1

ż

CipΓN q

`

fpξq ´ fpxNi q
˘

PX pdξq

“
ÿ

iPJNf

ż

CipΓN q

`

fpξq ´ fpxNi q
˘

PX pdξq (2.2)

10



where JNf “ ti : CipΓN q contains an affinity breaku since all other terms are 0. Indeed, as
fpξq “ αiξ ` βi on CipΓN q and using Corollary 1.8

ż

CipΓN q

`

fpξq ´ fpxNi q
˘

PX pdξq “ αiE
“

pX ´ pXN q1
t pXN“xNi u

‰

“ 0.

Now, taking the absolute value in (2.2), we have

ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰
ˇ

ˇ ď cardpJNf qmax
iPJNf

ż

CipΓN q
|fpξq ´ fpxNi q|PX pdξq

ď cardpJNf qrf sLip max
iPJNf

ż

CipΓN q
|ξ ´ xNi |PX pdξq (2.3)

and using Corollary 1.12 with s “ 1, we have the desired result, with an explicit asymptotic
upper bound,

lim sup
N

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰
ˇ

ˇ ď rf sLip lim
N

cardpJNf qmax
iPJNf

N2

ż

CipΓN q
|ξ ´ xNi |PX pdξq

ă rf sLip
`

2
?

3

`

cϕ,1{3}ϕ}1{3}ϕ
1{3}8

˘
1
2

ă `8.

(b) The sum in (2.2) in the discontinuous case is still true. However, the bound in (2.3) changes
and becomes

ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď 2`}f}
8,K0

max
iPJNf

PX
`

CipΓN q
˘

where }f}
8,K0

denotes the maximum of |f | on K0 and K0 is defined as the compact appearing
in Lemma 1.10 stating that the union over all N of all the cells where their intersection with the
interval ra1, a`s is non empty lies in a compact K0, namely

ď

N

ď

CipΓN qXra1,a`s‰H

CipΓN q Ă K0.

The desired limit is obtained using Theorem 1.11.

2.2 Lipschitz Convex functions

Thanks to the previous result on piecewise-affine functions, we can extend the rate of convergence
of order 2 to a bigger class of functions: Lipschitz convex functions.

We recall that a real-valued function f defined on a non-trivial interval I Ă R is convex if

f
`

tx` p1´ tqy
˘

ď tfpxq ` p1´ tqfpyq,

for every t P r0, 1s and x, y P I. If f : I Ñ R is supposed to be a convex function, then its right
and left derivatives exist, are non-decreasing on I̊ and @x P I̊ , f 1´pxq ď f 1`pxq. Moreover, as f is
supposed to be Lipschitz continuous, then f 1´ and f 1` are bounded on I by rf sLip .

Remark 2.2. One of the very interesting properties of convex functions when dealing with
stationary quantizers follows from Jensen’s inequality. Indeed, for every convex function f : I Ñ
R such that fpXq P L1pPq,

E
”

f
`

E
“

X | pXN
‰˘

ı

ď E
”

E
“

fpXq | pXN
‰

ı
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so that,
E
“

fp pXN q
‰

ď E
“

fpXq
‰

.

This means that the quantization-based cubature formula used to approximate E
“

fpXq
‰

is a
lower-bound of the expectation.

We present, here, a more convenient and general form of the well known Carr-Madan formula
representation (see [CM01]).

Proposition 2.3. Let f : I Ñ R be a Lipschitz convex function and let I be any interval non
trivial (‰ H, tau) with endpoints a, b P R. Then, there exists a unique finite non-negative Borel
measure ν :“ νf on I such that, for every c P I,

@x P I, fpxq “ fpcq ` px´ cqf 1`pcq `

ż

ra,csXI
pu´ xq`νpduq `

ż

pc,bsXI
px´ uq`νpduq.

Proof. Let f : I Ñ R be a Lipschitz convex function. We can define the non-negative finite
measure ν :“ νf on I by setting

@x, y P I, x ď y, ν
`

px, ys
˘

“ f 1`pyq ´ f
1
`pxq.

The finiteness of ν is induced by the Lipschitz continuity of f as the left and right derivatives
are bounded by rf sLip “ maxp}f 1`}8 , }f

1
´}8q. Let c P I, for every x ě c, we have the following

representation of fpxq:

fpxq “ fpcq `

ż x

c
f 1`puqdu

“ fpcq ` xf 1`pcq `

ż x

c
νppc, usqdu

“ fpcq ` xf 1`pcq `

ż ż

1pc,xspuq1pc,uspvqνpdvq du

“ fpcq ` xf 1`pcq `

ż

pc,xs
px´ vqdu νpdvq

“ fpcq ` xf 1`pcq `

ż

pc,bsXI
px´ vq`νpdvq

using Fubini’s Theorem and noting that 1pc,xspuq1pc,uspvq “ 1pc,xspvq1rv,xspuq. Similarly for
x ď c

fpxq “ fpcq ` xf 1`pcq `

ż

ra,csXI
pu´ xq`νpduq.

Then,

@x P R, fpxq “ fpcq ` xf 1`pcq `

ż

ra,csXI
pu´ xq`νpduq `

ż

pc,bsXI
px´ uq`νpduq.

We can now use the representation of convex functions given above and extend the result
concerning the weak error of order 2 (α “ 2 in (2.1)).

Proposition 2.4. We assume that the distribution PX “ ϕ ¨ λ of X satisfies the conditions
of Theorem 1.11. Let I be any non-trivial interval and let f : I Ñ R be a Lipschitz convex
function with second derivative ν (see Proposition 2.3). If IP

X
X supppνq is compact, with

IP
X

:“ supppPX q, then there exists a real constant Cf,X ą 0 such that

lim sup
N

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.
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Remark 2.5. Assuming that supppνq is compact actually means that f is affine outside a
compact set, namely that there exist αp˘q and βp˘q such that fpxq “ αp`qx ` βp`q, for x large
enough (x ě K`) and fpxq “ αp´qx` βp´q, for x small enough (x ď K´). Therefore, this class
of functions contains all classical vanilla financial payoffs: call, put, butterfly, saddle, straddle,
spread, etc. Moreover, if IP

X
is compact, such as in the uniform distribution, then there is no

need for the hypothesis on ν and we could consider any Lipschitz convex functions we want. The
hypothesis on the intersection allows us to consider more cases.

Proof. First we decompose the expectations across the Voronoï cells as follows

E
“

fpXq ´ fp pXN q
‰

“

N
ÿ

i“1

E
”

`

fpXq ´ fp pXN q
˘

1tXPCipΓN qu

ı

“

N
ÿ

i“1

E
”

`

fpXq ´ fpxNi q
˘

1tXPpxN
i´1{2

,xN
i`1{2

su

ı

.

We use the integral representation of the convex function f , of the Proposition 2.3, with x :“ X
and c :“ xi and with the stationarity conditional property given by Corollary 1.8, the first term
cancels out, for every i,

E
”

pX ´ xNi qf
1
`px

N
i q1tXPCipΓN qu

ı

“ 0.

Hence, we obtain

E
”

`

fpXq ´ fpxNi q
˘

1tXPpxN
i´1{2

,xN
i`1{2

su

ı

“ E

«

ˆ
ż

ra,xNi sXI
pu´Xq`νpduq `

ż

pxNi ,bsXI
pX ´ uq`νpduq

˙

1tXPpxN
i´1{2

,xN
i`1{2

su

ff

“ E

„
ż

pxN
i´1{2

,xNi s
pu´Xq`νpduq1tXPpxN

i´1{2
,xNi su



(2.4)

` E

„
ż

pxNi ,x
N
i`1{2

q

pX ´ uq`νpduq1tXPrxNi ,xNi`1{2
su



.

The interval pxNi´1{2, x
N
i s in the integral is left-open because when u “ xNi´1{2, asX P pxNi´1{2, x

N
i s,

pu ´Xq` “ 0. The same remark can be made concerning the right open-bound of the interval
pxNi , x

N
i`1{2q in the integral. Now, using a crude upper-bound for (2.4), we get

E
”

`

fpXq ´ fpxNi q
˘

1tXPpxN
i´1{2

,xN
i`1{2

su

ı

ď E
”

pxNi ´Xqν
`

pxNi´1{2, x
N
i s

˘

1tXPpxN
i´1{2

,xNi su

ı

` E
”

pX ´ xNi qν
`

pxNi , x
N
i`1{2q

˘

1tXPrxNi ,x
N
i`1{2

su

ı

ď E
“

|xNi ´X|1tXPCipΓN qu
‰

ν
`

CipΓN q
˘

as ν
`

pxNi´1{2, x
N
i`1{2q

˘

ď ν
`

CipΓN q
˘

. Hence

0 ď E
“

fpXq ´ fp pXN q
‰

ď

N
ÿ

i“1

E
“

|xNi ´X|1tXPCipΓN qu
‰

ν
`

CipΓN q
˘

ď

N
ÿ

i“1

E
“

|xNi ´X|1tXPCipΓN qu
‰

1txNi PJνu
ν
`

CipΓN q
˘

with Jν :“ rinfN x
N
ia´1{2, supN x

N
ib`1{2s where x

N
ia

and xNib are the centroids of the optimal quan-
tizer of size N that contains, respectively, the infimum and the supremum of the support of ν,
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denoted by a and b, respectively. Hence, xNia´1{2 is the lower bound of the Voronoï cell CiapΓN q
associated to the centroid xNia and xNib`1{2 is the upper bound of the Voronoï cell CibpΓN q asso-
ciated to the centroid xNib . If a is not contained in IP

X
, then the lower bound of Jν is set to a,

and the same hold for b: if it is not contained in IP
X
, the upper bound of Jν is set to b. Then,

N2E
“

fpXq ´ fp pXN q
‰

ď N2
N
ÿ

i“1

E
“

|xNi ´X|1tXPCipΓN qu
‰

1txNi PJνu
νpCipΓN qq

ď N2 sup
i:xNi PIPX

XJν

E
“

| pXN ´X|1tXPCipΓN qu
‰

N
ÿ

i“1

νpCipΓN qq

ď νpIP
X
qN2 sup

i:xNi PIPX
XJν

E
“

| pXN ´X|1tXPCipΓN qu
‰

yielding the desired result with Theorem 1.11 if IP
X
X Jν is compact.

Under the hypothesis IP
X
X supppνq compact, then by Lemma 1.10,

ď

N

ď

xNi PIPX
X supppνq

CipΓN q Ă
ď

N

ď

CipΓN qXIP
X
X supppνq‰H

CipΓN q Ă K0,

with K0 :“ IP
X
X Jν compact, which is what we were looking for.

Proposition 2.6. Assume that the distribution PX “ ϕ ¨ λ of X satisfies the conditions of
Theorem 1.11 not only on compact sets but uniformly. Let I be any non-trivial interval then for
every function f : I Ñ R Lipschitz convex with second derivative ν defined as in Proposition 2.3,
there exists a real constant Cf,X ą 0 such that

lim sup
N

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď Cf,X ă `8.

Proof. This proof is exactly the same as above the Proposition.

Remark 2.7. It has not be shown yet that Gaussian or Exponential random variables satisfy
the conditions of Theorem 1.11 uniformly but empirical tests tend to confirm that they exhibit
the error bound property for Lipschitz convex functions. More details are given in the numerical
part.

2.3 Differentiable functions

In the following proposition, we deal with functions that are piecewise-defined and where their
piecewise-defined derivatives are supposed to be locally-Lipschitz continuous or locally α-Hölder
continuous on the non-bounded parts of the interval. We define below what we mean by locally-
Lipschitz and locally α-Hölder.

Definition 2.8. • A function f : I Ñ R is supposed to be locally-Lipschitz continuous, if

@x, y P I |fpxq ´ fpyq| ď rf s
Lip,loc

|x´ y|
`

gpxq ` gpyq
˘

where rf s
Lip,loc

is a real constant and g : RÑ R`.

• A function f : I Ñ R is supposed to be locally α-Hölder continuous, if

@x, y P I |fpxq ´ fpyq| ď rf s
α,loc

|x´ y|α
`

gpxq ` gpyq
˘

where rf s
α,loc

is a real constant and g : RÑ R`.
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Proposition 2.9. Assume that the distribution PX of X satisfies the conditions of the Lr-Ls-
distortion mismatch Theorem 1.14 and Theorem 1.11 concerning the local behaviours of optimal
quantizers. If f : R Ñ R is a piecewise-defined continuous function with finitely many breaks
of affinity ta1, . . . , aKu, where ´8 “ a0 ă a1 ă ¨ ¨ ¨ ă aK ă aK`1 “ `8, such that the
piecewise-defined derivatives denoted pf 1kqk“0,...,d are either

(a) locally-Lipschitz continuous on pak, ak`1q where D qk ą 3 such that the qk-th power of gk :
pak, ak`1q Ñ R` defined in Definition 2.8 are convex and

`

}gkpXq}qk

˘

k“1,...,K
ă `8. Then

there exists a real constant Cf,X ą 0 such that

lim sup
N

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰
ˇ

ˇ ď Cf,X ă `8.

(b) or locally α-Hölder continuous on pak, ak`1q, α P p0, 1q, where D qk ą 3
2´α such that the qk-th

power of gk : pak, ak`1q Ñ R` defined in Definition 2.8 are convex and
`

}gkpXq}qk

˘

k“1,...,K
ă

`8. Then there exists a real constant Cf,X ą 0 such that

lim sup
N

N1`α
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰
ˇ

ˇ ď Cf,X ă `8.

Proof. (a) Let ΓN “ tx
N
1 , . . . , x

N
Nu be a L

2- optimal quantizer at level N ě 1. In the first place,
we define the set of all the indexes of the Voronoï cells that contains a break of affinity

INreg “
 

i “ 1, . . . , N : CipΓN q X ra1, aKs ‰ H
(

.

Hence,

E
“

fp pXN q
‰

´ E
“

fpXq
‰

“
ÿ

iPINreg

ż

CipΓN q

`

fpxNi q ´ fpξq
˘

PX pdξq

looooooooooooooooooooooomooooooooooooooooooooooon

pAq

`
ÿ

iRINreg

ż

CipΓN q

`

fpxNi q ´ fpξq
˘

PX pdξq

looooooooooooooooooooooomooooooooooooooooooooooon

pBq

.

First, we deal with the pBq term. As, i R INreg, f is differentiable in CipΓN q and admits a first-order
Taylor expansion at the point xNi , moreover by Corollary 1.8,

ş

CipΓN q
f 1pxNi qpξ´x

N
i qPX pdξq “ 0,

hence
ż

CipΓN q

`

fpxNi q ´ fpξq
˘

PX pdξq “

ż

CipΓN q

ż 1

0

`

f 1pxNi q ´ f
1ptxNi ` p1´ tqξq

˘

pxNi ´ ξqdtPX pdξq.

Now, we take the absolute value and we use the locally Lipschitz property of the derivative,
yielding

ˇ

ˇ

ˇ

ˇ

ż

CipΓN q

`

fpxNi q ´ fpξq
˘

PX pdξq

ˇ

ˇ

ˇ

ˇ

ď

ż

CipΓN q

ż 1

0
|f 1pxNi q ´ f

1ptxNi ` p1´ tqξq||x
N
i ´ ξ|dtPX pdξq

ď rf 1s
k,Lip,loc

ż

CipΓN q

ż 1

0
p1´ tq|xNi ´ ξ|

2
`

gkipx
N
i q ` gkiptx

N
i ` p1´ tqξq

˘

dtPX pdξq,

(2.5)
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with ki :“ tk “ 0, . . . , d : xi P pak, ak`1qu. Under the convex hypothesis of g
qki
ki

, we have that

gkiptx
N
i ` p1´ tqξq ď max

`

gkipx
N
i q, gkipξq

˘

ď gkipx
N
i q ` gkipξq,

thus
ż

CipΓN q

ż 1

0
p1´ tq|xNi ´ ξ|

2
`

gkpx
N
i q ` gkptx

N
i ` p1´ tqξq

˘

dtPX pdξq

ď
1

2

ż

CipΓN q
|xNi ´ ξ|

2
`

2gkpx
N
i q ` gkpξq

˘

PX pdξq.

Now, taking the sum over all i R INreg and denoting rf 1s
Lip,loc

:“ maxkrf
1s
k,Lip,loc

ˇ

ˇpBq
ˇ

ˇ ď
1

2
rf 1s

Lip,loc

ÿ

iRINreg

ż

CipΓN q
|xNi ´ ξ|

2
`

2gkipx
N
i q ` gkipξq

˘

PX pdξq

ď
K

2
rf 1s

Lip,loc
max
k
E
”

| pXN ´X|2
`

2gkp pX
N q ` gkpXq

˘

ı

ď
K

2
rf 1s

Lip,loc
max
k
} pXN ´X}2

2pk

`

2}gkp pX
N q}qk

` }gkpXq}qk

˘

ď
K

2
rf 1s

Lip,loc
} pXN ´X}2

2p
max
k

`

2}gkp pX
N q}qk

` }gkpXq}qk

˘

ď
3K

2
rf 1s

Lip,loc
} pXN ´X}2

2p
max
k
}gkpXq}qk

(2.6)

using Hölder inequality, such that 1
pk
` 1

qk
ă 1 and the convexity of gqk . Under the hypothesis

qk ą 3, pk has to be in contained in the interval p1, 3{2q, hence p is defined as p :“ maxk pk
and using the non-decreasing property of the Lp norm, we obtain the fourth inequality in (2.6).
Now, if we use the Lr-Ls-distortion mismatch Theorem 1.14 with r “ 2 and s “ 2p ă 3 under
the condition X P L

2p
3´2p

`δ
pPq, we have

N2
ˇ

ˇpBq
ˇ

ˇ ď N2 3K

2
rf 1s

Lip,loc
} pXN ´X}2

2p
max
k
}gkpXq}qk

NÑ`8
ÝÝÝÝÝÑ C2 ă `8.

(2.7)

Secondly, we take care of the pAq term. Using Lemma 1.10 stating that the union over all N
of all the cells where their intersection with the interval ra1, aKs is non empty lies in a compact
K0, namely

ď

N

ď

CipΓN qXra1,aK s‰H

CipΓN q Ă K0

and using that f 1 is bounded on K0 by rf 1sLip,K0
, we can use the following integral representation

of f

fpxq “

ż x

0
f 1puqdu` fp0q

and the stationarity property of the optimal quantizer on CipΓN q, yielding

ˇ

ˇ

ˇ

ˇ

ż

CipΓN q

`

fpxNi q ´ fpξq
˘

PX pdξq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

CipΓN q

ż xNi

ξ
f 1puqduPX pdξq

ˇ

ˇ

ˇ

ˇ

ď rf 1sLip,K0

ż

CipΓN q
|ξ ´ xNi |PX pdξq.
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Now, we sum among all i P INreg

ˇ

ˇpAq
ˇ

ˇ ď rf 1sLip,K0

ÿ

iPINreg

ż

CipΓN q
|ξ ´ xNi |PX pdξq.

Hence, using the result concerning the local behaviour of optimal quantizers Corollary 1.12 as
ra1, aKs is compact, we have

N2
ˇ

ˇpAq
ˇ

ˇ ď N2rf 1sLip,K0

ÿ

iPINreg

ż

CipΓN q
|ξ ´ xNi |PX pdξq

ď N2Krf 1sLip,K0
sup

i:xNi PK0

ż

CipΓN q
|ξ ´ xNi |PX pdξq

NÑ`8
ÝÝÝÝÝÑ C1 ă `8. (2.8)

Finally, using (2.8) and (2.7), we have the desired result

N2
ˇ

ˇE
“

fpXq
‰

´ E
“

fp pXN q
‰ˇ

ˇ ď N2
´

ˇ

ˇpAq
ˇ

ˇ`
ˇ

ˇpBq
ˇ

ˇ

¯

NÑ`8
ÝÝÝÝÝÑ C1 ` C2 ă `8.

(b) When the piecewise-defined derivatives are locally α-Hölder continuous on p´8, a1s and
raK ,`8q, α P p0, 1q, the proof is very close to the locally Lipschitz case. Indeed, the first
difference is in (2.5), where the |xNi ´ ξ|

2 is replaced by |xNi ´ ξ|
1`α and the constant is the one

of the locally α-Hölder hypothesis. This implies that (2.6) is replaced by

|pBq| ď
3Krf 1s

Hol,loc

2
} pXN ´X}1`α

p1`αqp
max
k
}gkpXq}qk .

Finally, using the Lr-Ls-distortion mismatch Theorem 1.14 with r “ 2 and s “ p1 ` αqp ă 3

under the condition X P L
p1`αqp

3´p1`αqp
`δ
pPq, we have

N1`α|pBq| ď N1`α 3Krf 1s
Hol,loc

2
} pXN ´X}1`α

p1`αqp
max
k
}gkpXq}qk

NÑ`8
ÝÝÝÝÝÑ C3 ă `8.

The other parts of the proof are identical, yielding the desired result.

Remark 2.10. If one strengthens the hypothesis concerning the piecewise locally Lipschitz
continuous derivative and considers in place that the derivative is piecewise Lipschitz continuous,
then the hypothesis that X should satisfy the conditions of Theorem 1.14 can be relaxed. Indeed,
the term 3K

2 rf
1s
Lip,loc

} pXN ´X}2
2p

maxk }gkpXq}qk in (2.6) would become 1
2 rf

1sLip}
pXN ´X}2

2
and

we would conclude using Zador’s Theorem 1.9.

3 Weak Error and Richardson-Romberg Extrapolation

One can improve the previous speeds of convergence using Richardson-Romberg extrapolation
method. The Richardson extrapolation is a method that was originally introduced in numeri-
cal analysis by Richardson in 1911 (see [RG10]) and developed later by Romberg in 1955 (see
[Rom55]) whose aim was to speed-up the rate of convergence of a sequence, to accelerate the
research of a solution of an ODE’s or to approximate more precisely integrals.
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[TT90] and [Pag07, Pag18] used this concept for the computation of the expectation E
“

fpXT q
‰

of a diffusion pXtqtPr0,T s that cannot be simulated exactly at a given time T but can be approx-
imated by a simulable process rX

phq
T using a Euler scheme with time step h “ T {n and n the

number of time step. The main idea is to use the weak error expansion of the approxima-
tion in order to highlight the term we would kill. For example, using the following weak time
discretization error of order 1

E
“

fpXT q
‰

“ E
“

fp rX
phq
T q

‰

`
c1

n
`Opn´2q,

one reduces the error of the approximation using a linear combination of the approximating
process rX

phq
T and a refiner process rX

ph{2q
T , namely

E
“

fpXT q
‰

“ E
“

2fp rX
ph{2q
T q ´ fp rX

phq
T q

‰

´
1

2

c2

n2
`Opn´2q.

Our goal within the optimal quantization framework is to improve the speed of convergence of
the cubature formula using the same ideas. Let us consider a random variable X : pΩ,A,Pq Ñ R

and a quadratic-optimal quantizer pXN of X. In our case we show that, if we are in dimension
one there exists, for some functions f , a weak error expansion of the form:

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`OpN´p2`βqq

with β P p0, 1q. We present in Section 3.2 a similar result in higher dimension.

3.1 In dimension one

This first result is focused on function f : R Ñ R with Lipschitz continuous second derivative.
In that case, we have a weak error quantization of order two. The first term of the expansion is
equal to zero, thanks to the stationarity of the quadratic optimal quantizer.

Proposition 3.1. Let f : R Ñ R be a twice differentiable function with Lipschitz continuous
second derivative. Let X : pΩ,A,Pq Ñ R be a random variable and the distribution of PX of
X has a non-zero absolutely continuous density ϕ and, for every N ě 1, let ΓN be an optimal
quantizer at level N ě 1 for X. Then, @β P p0, 1q, we have the following expansion

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`OpN´p2`βqq.

Moreover, if ϕ : ra, bs Ñ R` is a Lipschitz continuous probability density function, bounded away
from 0 on ra, bs then we can choose β “ 1, yielding

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`OpN´3q.

Proof. If f is twice differentiable with Lipschitz continuous second derivatives, we have the
following expansion

fpxq “ fpyq ` f 1pyqpx´ yq `
1

2
f2pyqpx´ yq2 `

ż 1

0
p1´ tq

`

f2ptx` p1´ tqyq ´ f2pyq
˘

px´ yq2dt

hence replacing x and y by X and pXN respectively and taking the expectation yields

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
1

2
E
“

f2p pXN q|X ´ pXN |2
‰

`RpX, pXN q

18



where RpX, pXq “
ş1
0p1´ tqE

“`

f2ptX ` p1´ tq pXq ´ f2p pXq
˘

|X ´ pX|2
‰

dt.
First, using Theorem 1.13 with f2, we have the following limit

lim
NÑ`8

N2E
“

f2p pXN q|X ´ pXN |2
‰

“ Q2pPX q

ż

f2pξqPX pdξq,

hence
E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`RpX, pXN q.

Now, we look closely at asymptotic behaviour of RpX, pXN q. One notices that, if we consider a
Lipschitz continuous function g : RÑ R, for any fixed αP p0, 1q,

@x, yP R, |gpxq ´ gpyq| ď 2}g}α
8
rgs1´α

Lip
|x´ y|1´α.

In our case, taking g ” f2, we have

E
”

`

f2ptX ` p1´ tq pXN q ´ f2p pXN q
˘

|X ´ pXN |2
ı

ď E
”

2}f2}α
8
rf2s1´α

Lip
t1´α|X ´ pXN |1´α|X ´ pXN |2

ı

ď Cβ,f2t
β E

“

|X ´ pXN |2`β
‰

with 0 ă β ă 1 where β “ 1´ α, hence

RpX, pXN q ď rCβ,f2 E
“

|X ´ pXN |2`β
‰

,

with rCβ,f2 “ Cβ,f2
1

p2`βqp1`βq . Using now Theorem 1.14 with r “ 2 and s “ 2` β, we have the

desired result: E
“

|X ´ pXN |2`β
‰

“ OpN´p2`βqq and finally

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
c2

N2
`OpN´p2`βqq,

for every β P p0, 1q. If moreover, the density ϕ of X is Lipschitz continuous, bounded away from
0 on ra, bs then we can take β “ 1.

Now, following the Richardson-Romberg idea, we could combine approximations with optimal
quantizers pXN of size N and pX

rN of size rN , with rN ą N in order to kill the residual term, leading

E
“

fpXq
‰

“ E

«

rN2fp pX
rN q ´N2fp pXN q

rN2 ´N2

ff

`OpN´p2`βqq. (3.1)

Remark 3.2. For the choice of rN , we consider rN :“ k ˆ N . A natural choice for k could
be k “ 2 or k “

?
2 but note that the complexity is proportional to pk ` 1qN . In practice it

is therefore preferable to take a small k that does not increase complexity too much. For the
numerical example, we choose rN :“ k ˆ N with k “ 1.2, this is arbitrary and probably not
optimal, however even with this k, we attain a weak error of order 3.

3.2 A first extension in higher dimension

In this part, we give a first result on higher dimension concerning the weak error expansion of
E
“

fpXq
‰

when approximated by E
“

fp pXN q
‰

. In the next part, we use the following matrix norm:
let M P Rdˆd, then |||M ||| :“ supu:|u|“1 |u

TMu|.
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Proposition 3.3. Let f : Rd Ñ R be a twice differentiable function with a bounded and Lip-
schtiz Hessian H, namely @x, y P Rd, |||Hpxq ´Hpyq||| ď rHsLip |x ´ y|. Let X : pΩ,A,Pq Ñ
Rd be a random vector with independent components pXkqk“1,...,d. For every pNkqk“1,...,d ě

1, let p pXNd
d qk“1,...,d be quadratic optimal quantizers of pXkqk“1,...,d taking values in the grids

pΓNkqk“1,...,d respectively and we define pXN as the product quantizer X taking values in the finite
grid ΓN :“

Â

k“1,...,d ΓNd of size N :“ N1 ˆ ¨ ¨ ¨ ˆNd. Then, we have the following expansion

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`

d
ÿ

k“1

ck
N2
k

`O

ˆ

´

min
k“1:d

Nk

¯´p2`βq
˙

.

Proof. If f is twice differentiable, hence we have the following Taylor’s expansion

fpxq “ fpaq `∇fpaqpx´ aq ` 1

2
Hpaq ¨ px´ aqb2

`

ż 1

0
p1´ tq

`

Hptx` p1´ tqaq ´Hpaq
˘

¨ px´ aqb2dt

where the notation fpx, aq ¨ px ´ aqb2 stands for px ´ aqT fpx, aqpx ´ aq. Replacing x and a by
X and pXN respectively and taking the expectation

E
“

fpXq
‰

“ E
“

fp pXN q
‰

` E
“

∇fp pXN qpX ´ pXN q
‰

`
1

2
E
“

Hp pXN q ¨ pX ´ pXN qb2
‰

`

ż 1

0
p1´ tqE

”

`

HptX ` p1´ tq pXN q ´Hp pXN q
˘

¨ pX ´ pXN qb2
ı

dt.

Noticing that, by Corollary 1.8,

E
“

∇fp pXN qpX ´ pXN q
‰

“

d
ÿ

k“1

E

„

Bf

Bxk
p pXN qpXk ´ pXNk

k q



“

d
ÿ

k“1

E

«

E

„

Bf

Bxk
p pXN qpXk ´ pXNk

k q | pX´k



ff

“ 0.

where pX´k denotes p pXN1
1 , . . . , pX

Nk´1

k´1 , pX
Nk`1

k`1 , . . . , pXNd
d q. Hence

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`
1

2
E
“

Hp pXN q ¨ pX ´ pXN qb2
‰

`

ż 1

0
p1´ tqE

”

`

HptX ` p1´ tq pXN q ´Hp pXN q
˘

¨ pX ´ pXN qb2
ı

dt

(3.2)
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and looking at the second term in (3.2)

E
“

Hp pXN q ¨ pX ´ pXN qb2
‰

“

d
ÿ

k“1

E

„

B2f

Bx2
k

p pXN q|Xk ´ pXNk
k |2



` 2
ÿ

k‰l

E

„

B2f

BxkBxl
p pXN qpXk ´ pXNk

k qpXl ´ pXNl
l q



“

d
ÿ

k“1

E

«

E

„

B2f

Bx2
k

p pXN q|Xk ´ pXNk
k |2 | pX´k



ff

` 2
ÿ

k‰l

E

«

E

„

B2f

BxkBxl
p pXN qpXk ´ pXNk

k q | Xl



loooooooooooooooooooooomoooooooooooooooooooooon

“0

pXl ´ pXNl
l q

ff

“

d
ÿ

k“1

E

«

E

„

B2f

Bx2
k

p pXN q|Xk ´ pXNk
k |2 | pX´k



ff

“

d
ÿ

k“1

E

«

E

„

B2f

Bx2
k

px1, . . . , xk´1, pX
Nk
k , xk`1, . . . , xdq|Xk ´ pXNk

k |2

ˇ

ˇ

ˇ

ˇ

pX´k“x´k

ff

“

d
ÿ

k“1

E
”

E
“

gk,x´kp
pXNk
k q|Xk ´ pXNk

k |2
‰
ˇ

ˇ

pX´k“x´k

ı

.

Now, using Theorem 1.13, we have the following limits, for each k

lim
NkÑ`8

N2
k E

“

gk,x´kp
pXNk
k q|Xk ´ pXNk

k |2
‰

“ Q2pPXk
q

ż

gk,x´kpξqPX pdξq.

Giving us the first part of the desired result

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`

d
ÿ

k“1

ck
N2
k

`

ż 1

0
p1´ tqE

”

`

HptX`p1´ tq pXN q´Hp pXN q
˘

¨ pX´ pXN qb2
ı

dt

with ck :“ 1
2Q2pPXk

q
ş ş

gk,x´kpxqPXk pdxqPX´k pdyq. Now, we take care of the integral part, we
proceed using the same methodology as in the one dimensional case, using the hypothesis on the
Hessian

E
”

ˇ

ˇ

`

HptX ` p1´ tq pXN q ´Hp pXN q
˘

¨ pX ´ pXN qb2
ˇ

ˇ

ı

ď 2tβrHsβ
Lip
|||H|||1´β

8
E
“

|X ´ pXN |2`β
‰

with β P p0, 1q and |||H|||
8

:“ supxPRd |||Hpxq|||. Hence
ż 1

0
p1´ tqE

”

`

HptX ` p1´ tq pXN q ´Hp pXN q
˘

¨ pX ´ pXN qb2
ı

dt

ď
1

p2` βqp1` βq
CH,X E

“

|X ´ pXN |2`β
‰

.

Using now Theorem 1.14, let s “ 2 ` β, we have the desired result: E
“

|Xk ´ pXNk
k |2`β

‰

“

OpN
´p2`βq
k q and finally

E
“

fpXq
‰

“ E
“

fp pXN q
‰

`

d
ÿ

k“1

ck
N2
k

`O

ˆ

´

min
k“1:d

Nk

¯´p2`βq
˙

,

for every β P p0, 1q. If moreover, the densities ϕk of Xk, for all k “ 1, . . . , k, are Lipschitz
continuous, bounded away from 0 on ra, bs then we can take β “ 1.
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Remark 3.4. Even-though, we could be interested by considering non-independent components
pXkqk“1,...,d, the independence hypothesis on the components is necessary in the proof because
we proceed component by component. For example the first order term of the expansion would
not be null by stationarity if the components are not independent.

4 Applications

4.1 Quantized Control Variates in Monte Carlo simulations

Let Z P L2pPq be a random vector with components pZkqk“1,...,d, we assume that we have a
closed-form for ErZks, k “ 1, . . . , d, and f : Rd Ñ R our function of interest. We are interested
in the quantity

I :“ E
“

fpZq
‰

. (4.1)

The standard method for approximating (4.1) if we are able to simulate independent copies of
Z is to devise a Monte Carlo estimator. In this part, we present a reduction variance method
based on quantized control variates. Let ΞN our d dimensional control variate

ΞN :“ pΞNk qk“1,...,d

where each component ΞNk is defined by

ΞNk :“ fkpZkq ´ E
“

fkp pZ
N
k q

‰

,

with fkpzq :“ fpErZ1s, . . . ,ErZk´1s, z,ErZk`1s, . . . ,ErZdsq and pZNk is an optimal quantizer of
cardinality N of the component Zk. One notices that the complexity for the evaluation of fk is
the same as the one of f . Now, defining Xλ :“ fpZq ´ xλ,ΞNy where λ P Rd, we can introduce
Iλ,N as an approximation for (4.1)

Iλ,N :“ E
“

Xλ
‰

“ E
“

fpZq ´ xλ,ΞNy
‰

“ E

«

fpZq ´
d
ÿ

k“1

λkfkpZkq

ff

`

d
ÿ

k“1

λk E
“

fkp pZ
N
k q

‰

.

(4.2)

The terms E
“

fkp pZ
N
k q

‰

in (4.2) can be computed easily using the quantization-based cubature
formula if we known the grids of the quantizers p pZNk qk“1,...,d and their associated weights.

Remark 4.1. We look for the λmin minimizing the variance of Xλ

VarpXλminq “ min
 

Var
`

fpZq ´ xλ,ΞNy
˘

, λ P Rd
(

.

The solution of the above optimization problem is the solution of following system

DpZq ¨ λ “ B

where DpZq, the covariance-variance matrix of
`

fkpZkq
˘

k“1,...,d
, and B are given by

DpZq “

¨

˚

˝

Var
`

f1pZ1q
˘

¨ ¨ ¨ Cov
`

f1pZ1q, fdpZdq
˘

...
. . .

...
Cov

`

fdpZdq, f1pZ1q
˘

¨ ¨ ¨ Var
`

fdpZdq
˘

˛

‹

‚

, B “

¨

˚

˝

Cov
`

fpZq, f1pZ1q
˘

...
Cov

`

fpZq, fdpZdq
˘

˛

‹

‚

.

The solution to this optimization problem can easily be solved numerically using any library of
linear algebra able to solve linear systems thanks to QR or LU decompositions.
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Remark 4.2. If the Zk’s are independent hence λ can be determined easily. Indeed, in that
case the matrix DpZq is diagonal. Then, the λk’s are given by

λk “
Cov

`

fkpZkq, fpZq
˘

Var
`

fkpZkq
˘ .

Now, we can define pIλ,N
M

the associated Monte Carlo estimator of Iλ,N

pIλ,N
M

“
1

M

M
ÿ

m“1

˜

fpZmq ´
d
ÿ

k“1

λkfkpZ
m
k q

¸

`

d
ÿ

k“1

λk E
“

fkp pZ
N
k q

‰

.

One notices that E
“

I ´ Iλ,N
‰

‰ 0, with bias equal to
řd
k“1 λk

`

E
“

fkp pZ
N
k q

‰

´ E
“

fkpZkq
‰˘

.
However the quantity we are really interested by is not the bias but the MSE (Mean Squared
Error), yielding a bias-variance decomposition

MSEppIλ,N
M
q “

˜

d
ÿ

k“1

λk

´

E
“

fkp pZ
N
k q

‰

´ E
“

fkpZkq
‰

¯

¸2

looooooooooooooooooooooooomooooooooooooooooooooooooon

bias2

`
1

M
Var

˜

fpZq ´
d
ÿ

k“1

λkfkpZkq

¸

loooooooooooooooooomoooooooooooooooooon

Monte Carlo variance

.

Our aim is to minimize the cost of the Monte Carlo simulation for a given MSE or upper-bound
of the MSE. Consequently, for a given Monte Carlo estimator pIλ,N

M
our minimization problem

reads
inf

MSEppIλ,NM qďε2
CostppIλ,N

M
q. (4.3)

Let κ “ Costpfpzqq for a given z P Rd, the cost of a standard Monte Carlo estimator pIM of size
M is CostppIM q “ κM . In our controlled case, if we neglect the cost for building an optimal
quantizer, the global complexity associated to the Monte-Carlo estimator pIλ,N

M
is given by

CostppIλ,N
M
q “ κ

`

pd` 1qM ` dN
˘

where the cost of the computation of fpzq ´ λ
řd
k“1 fkpzq is upper-bounded by pd` 1qκ whereas

κdN is the cost of the quantized part. Indeed, there is d expectations of functions of N -quantizers
to compute, inducing a cost of order κdN . Some optimizations can be implemented when
computing fkpzq, in that case Costpfkpzqq ă κ. So, (4.3) becomes

inf
MSEppIλ,NM qďε2

κ
`

pd` 1qM ` dN
˘

.

Moreover, using the results in the first part of the paper concerning the weak error, we could
define an upper-bound for the MSEppIλ,N

M
q, indeed if each fk is in a class of function where the

weak error of order two is attained when using a quantization-based cubature formula then

MSEppIλ,N
M
q “

˜

d
ÿ

k“1

λk

´

E
“

fkp pZ
N
k q

‰

´ E
“

fkpZkq
‰

¯

¸2

`
σ2
λ

M
ď

C

N4
`
σ2
λ

M

with σ2
λ :“ Var

`

fpZq ´
řd
k“1 λkfkpZkq

˘

. Now, our minimization problem becomes

inf
C
N4`

σ2
λ
M
ďε2

κ
`

pd` 1qM ` dN
˘

.
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C
N4 corresponds to the squared empirical bias and σ2

λ
M to the empirical variance, hence a standard

approach when dealing with this kind of problem, is to equally divide ε2 between the bias and
the variance: C

N4 “
ε2

2 and σ2
λ
M “ ε2

2 yielding

N “ Opε´
1
2 q and M “ Opε´2q,

hence the cost would be of order Opε´2q. However, as the cost is additive and in the case where
σ2
λ is close to Var

`

fpZq
˘

, meaning that the control variate does not really reduce the variance,
we want to reduce the bias as much as we can. So another idea could be to choose both terms
M and N of order Opε´2q, because the impact on the cost of the Monte Carlo is at least of this
order. Then, we search θ P p0, 1q defined by

θε2 “
C

N4
and p1´ θqε2 “

σ2
λ

M
,

such that the impact on the cost of the Monte Carlo part and the quantization part are of same
order: Opε´2q. In that case, θ is given by

"

θε2 “ C
N4

κdN “ Opε´2q
ùñ θ “ Opε6q.

In practice, we do take not that high value for N . Indeed, the bias converges to 0 as N´4, so
taking optimal quantizers of size 200 or 500 is enough for considering that the bias is negligible
compared to the residual variance of the Monte Carlo estimator.

Remark 4.3. Now, if we consider that we have no closed-form for ErZks, k “ 1, . . . , d, then
we need to approximate them by mk (this would impact the total cost of the method, as one
would need to use a numerical method for computing the mk’s but this can be done once and for
all before estimating pIλ,N

M
). These approximations yield different control variates: the functions

rfkpzq :“ fpm1, . . . ,mk´1, z,mk`1, . . . ,mdq, inducing a different MSE

MSEppI
rλ,N
M
q “

˜

d
ÿ

k“1

rλk

´

E
“

rfkp pZ
N
k q

‰

´ E
“

rfkpZkq
‰

¯

¸2

`
rσ2
rλ

M

with rσ2
rλ

:“ Var
`

fpZq ´
řd
k“1

rλk rfkpZkq
˘

and rλk, k “ 1, . . . , d. Finally, we can conclude in the

same way as before if the rfk’s are in a class of function where the weak error of order two is
attained when using a quantization-based cubature formula.

4.2 Numerical results

Let pStqtPr0,T s be a geometric Brownian motion representing the dynamic of a Black-Scholes asset
between time t “ 0 and time t “ T defined by

St “ S0 epr´σ
2{2qt`σWt

with pWtqtPr0,T s a standard Brownian motion defined on a probability space pΩ,A,Pq, r the
interest rate and σ the volatility. When considering to use optimal quantization with a Black-
Scholes asset, we have two possibilities: either we take an optimal quantizer of a normal dis-
tribution as WT „ N p0, T q or we build an optimal quantizer of a log-normal distribution as
logpepr´σ

2{2qT`σWT q „ N
`

pr ´ σ2{2qT, σ2T
˘

. In this part we consider both approaches since
each one has its benefits and drawbacks.
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Optimal Quantizers of log-normal random variables need to be computed each time we con-
sider different parameters for the Black-Scholes asset. Indeed, the only operations preserving
the optimality of the quantizers are translations and scaling. However, this transformations are
not enough if one wishes to build an optimal quantizer of a Log-Normal random variables with
parameters µ and σ from an optimal quantizer of a standardized Log-Normal random variable.
However, if one looses time by computing for each set of parameters an optimal quantizer for
the log-normal random variable, it gains in precision.

Now, if we consider the case of optimal quantizers of normal random variables, we loose in
precision because we do not quantize directly our asset but the optimal quantizers of normal
random variables can be computed once and for all and stored on a file. Indeed, we can build
every normal random variable from a standard normal random variable using translations and
scaling. Moreover, high precision grids of the N p0, 1q-distribution are in free access for download
at the website: www.quantize.maths-fi.com.

Substantial details concerning the optimization problem and the numerical methods for build-
ing quadratic optimal quantizers can be found in [Pag18, PP03, PPP04, MRKP18]. In our case,
we chose to build all the optimal quantizers with the Newton-Raphson algorithm (see [PP03] for
more details on the gradient and Hessian formulas for the N p0, 1q-distribution and [MRKP18]
for other distributions) modified with the Levenberg-Marquardt procedure which improves the
robustness of the method.

4.2.1 Vanilla Call

The payoff of a Call expiring at time T is

pST ´Kq`

with K the strike and T the maturity of the option. Its price, in the special case of Black-Scholes
model, is given by the following closed formula

I0 :“ E
“

e´rT pST ´Kq`
‰

“ CallBS pS0,K, r, σ, T q “ S0N pd1q ´K e´rT N pd2q (4.4)

where N pxq is the cumulative distribution function of the standard normal distribution, d1 :“
logpS0{Kq`pr`σ2{2qT

σ
?
T

and d2 :“ d1 ´ σ
?
T . Although the price of a Call in the Black-Scholes

model can be expressed in a closed form, it is a good exercise to test new numerical methods
against this benchmark. We compare the use of optimal quantizers of normal distribution, when
one quantizes the law of the Brownian motion at time T and log-normal distribution when one
quantizes directly the law of the asset ST at time T .

In the first case, we can rewrite I0 as a function of a random variable Z with a N p0, 1q-
distribution, namely a normal distributed random variable,

E
“

e´rT pST ´Kq`
‰

“ E
“

fpZq
‰

where fpxq :“ e´rT ps0 epr´σ
2{2qT`σ

?
Tx´Kq` is continuous with a piecewise-defined locally-

Lipschitz derivative, with respect to the function gpxq “ eσ
?
T |x|.

In the second case, we have

E
“

e´rT pST ´Kq`
‰

“ E
“

ϕpST q
‰

where ϕpxq :“ e´rT px´Kq` is piecewise affine with one break of affinity.
The Black-Scholes parameters considered are

s0 “ 100, r “ 0.1, σ “ 0.5,
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whereas those of the Call option are T “ 1 and K “ 80. The reference value is 34.15007.
The first graphic in the Figure 1 represents the weak error between the benchmark and the
quantization-based approximations in function of the size of the grid: N ÞÝÑ

ˇ

ˇI0 ´ E
“

fp pZN q
‰ˇ

ˇ

and N ÞÝÑ
ˇ

ˇI0 ´E
“

ϕp pXN q
‰
ˇ

ˇ, the second represents the weak error multiplied by N2 in function
of N : N ÞÝÑ N2 ˆ

ˇ

ˇI0 ´ E
“

fp pZN q
‰
ˇ

ˇ and N ÞÝÑ N2 ˆ
ˇ

ˇI0 ´ E
“

ϕp pXN q
‰
ˇ

ˇ.
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Figure 1: Call option in a Black-Scholes model.

First, we notice that both methods yield a weak-error of order 2, as desired. Second, if we
look closely at the results the log-normal grids give a more precise price. However we need to
build a specific grid each time we have a new set of parameters for the asset, whereas such
is not the case when we choose to quantize the normal random variable, we can directly read
precomputed grids with their associated weights in files.

4.2.2 Compound Option

The second product we consider is a Compound Option: a Put-on-Call. The payoff of a Put-on-
Call expiring at time T1 is the following

´

K1 ´ E
“

e´rpT2´T1qpST2 ´K2q` | ST1
‰

¯

`

with price

I0 :“ E

„

e´rT1
´

K1 ´ E
“

e´rpT2´T1qpST2 ´K2q` | ST1
‰

¯

`



. (4.5)

The inner expectation can be computed, using the fact that ST2 is a Black-Scholes asset and we
know the conditional law of ST2 given ST1 . Using (4.4), the value of the inner expectation is

E
“

e´rpT2´T1qpST2 ´K2q` | ST1
‰

“ CallBS pST1 ,K2, r, σ, T2 ´ T1q.

Hence, the price of the Put-On-Call option in (4.5) can be rewritten as

I0 “ E
”

e´rT1
`

K1 ´ CallBS pST1 ,K2, r, σ, T2 ´ T1q
˘

`

ı

.

The Black-Scholes parameters considered are

s0 “ 100, r “ 0.03, σ “ 0.2,
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whereas those of the Put-On-Call option are T1 “ 1{12, T2 “ 1{2, K1 “ 6.5 and K2 “ 100. The
reference value, obtained using an optimal quantizer of size 10000 of the N p0, 1q-distribution, is
1.3945704. As in the vanilla case, we compare the use of optimal quantizers of normal distribution
and log-normal distribution. In the first case, we have

I0 “ E
“

fpZq
‰

where Z „ N p0, 1q and fpzq “ e´rT1
`

K1´CallBS ps0 epr´σ
2{2qT1`σ

?
T1z,K2, r, σ, T2´T1q

˘

`
, and

in the second case
I0 “ E

“

ϕpXq
‰

where logpXq „ N ppr ´ σ2{2qT, σ
?
T q and ϕpxq “ e´rT1

`

K1 ´ CallBS ps0x,K2, r, σ, T2 ´ T1q
˘

`
.

The first graphic in Figure 2 represents the weak error between the benchmark and the quantization-
based approximations in function of the size of the grid: N ÞÝÑ

ˇ

ˇI0 ´ E
“

fp pZN q
‰ˇ

ˇ and N ÞÝÑ
ˇ

ˇI0´E
“

ϕp pXN q
‰ˇ

ˇ, the second allows us to observe if the rate of convergence is indeed of order 2.
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Figure 2: option in a Black-Scholes model.

We notice that both methods yield a weak-error of order 2 as desired, however it is not clear
that one should use the log-normal representation of (4.5) in place of the Gaussian represen-
tation. Indeed, both constants in the rate of convergence are of the desired order and getting
Gaussian optimal quantizers is much cheaper than building optimal quantizers of log-normal
random variables. Hence, one should choose the Gausian representation as it is as precise as the
log-normal one and is much cheaper.

4.2.3 Exchange spread Option

In this part, we consider a higher dimensional problem. Let two Black-Scholes assets pSiT qi“1,2

at time T related to two Brownian motions pW i
T qi“1,2, with correlation ρ P r´1, 1s. We are

interested by an exchange spread option with strike K with payoff

pS1
T ´ S

2
T ´Kq`

whose price is
I0 :“ E

“

e´rT pS1
T ´ S

2
T ´Kq`

‰

. (4.6)

Decomposing the two Brownian motions into two independent parts, we have pW 1
T ,W

2
T q “?

T p
a

1´ ρ2Z1 ` ρZ2, Z2q, where Z1 and Z2 are two independent N p0, 1q-distributed Gaussian
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random variables. Now, pre-conditioning on Z2 in (4.6) and using (4.4), we have

I0 “ E
“

ϕpZ2q
‰

where

ϕpzq “ CallBS ps
1
0 e´ρ

2σ2
1T {2`σ1ρ

?
Tz, s2

0 epr´σ
2
2{2qT`σ2

?
Tz `K, r, σ1

a

1´ ρ2, T q.

The numerical specifications of the function ϕ are as follows:

si0 “ 100, r “ 0.02, σi “ 0.5, ρ “ 0.5, T “ 10, K “ 10.

In that case, the reference value is 53.552678.
First, we look at the weak error induced by the quantization-based cubature formula when

approximating (4.6). We use optimal quantizers of the normal random variable Z2. The
quantization-based approximation is denoted pIN ,

pIN :“ E
“

ϕp pZN q
‰

.

The first graphic in Figure 3 represents the weak error between the benchmark and the quantization-
based approximation in function of the size of the grid: N ÞÝÑ

ˇ

ˇI0´E
“

ϕp pZN q
‰
ˇ

ˇ, the second plots
N ÞÝÑ N2 ˆ

ˇ

ˇI0 ´E
“

ϕp pZN q
‰
ˇ

ˇ and allows us to observe that the rate of convergence is indeed of
order 2.
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Figure 3: Exchange spread option pricing in a Black-Scholes model.

Now, noticing that ϕ is a twice differentiable function with a bounded second derivative, we
show that we can attain a weak error of order 3 when using a Richardson-Romberg extrapolation
denoted pIRR

rN,N
and defined in (3.1).
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Figure 4: Richardson-Romberg extrapolation, with rN “ 1.2 ˆ N , for Exchange spread option
pricing in a Black-Scholes model.

4.2.4 Basket Option

A typical financial product that allows to diversify the market risk and to invest in options is
a basket option. The simplest one is an option on a weighted average of stocks. For example,
if we consider an option on the FTSE index, this is a basket option where the assets are the
companies defined in the description of the index and the weights are the market capitalization of
each company at the time we built the index normalized by the sum on all market capitalizations.

In this part, we consider d correlated assets pSkT qk“1,...,d following a Black-Scholes model and
the payoff we consider is

fpS1
t , . . . , S

d
T q :“

ˆ d
ÿ

k“1

αkS
k
T ´K

˙

`

(4.7)

whose price is

I0 :“ e´rT E

«

ˆ d
ÿ

k“1

αkS
k
T ´K

˙

`

ff

.

I0 cannot be computed directly, hence we use a Monte Carlo estimator in order to approximate
the expectation. The standard estimator, denoted pIM , is the crude Monte Carlo estimator and
is given by

pIM :“ e´rT
1

M

M
ÿ

m“1

ˆ d
ÿ

k“1

αkS
k,pmq
T ´K

˙

`

where pSk,pmqT qm“1,...,M are i.i.d. copies of SkT . We compare the crude estimator to our novel ap-
proach based on a d-dimensional quantized control variates ΞN . In that case, I0 is approximated
by IN defined by

IN :“ e´rT E

«

ˆ d
ÿ

k“1

αkS
k
T ´K

˙

`

´ xλ,ΞNy

ff

where ΞN is defined later, yielding the following Monte Carlo estimator

pIλ,NM :“ e´rT
1

M

M
ÿ

m“1

ˆ d
ÿ

k“1

αkS
k,pmq
T ´K

˙

`

´ xλ,ΞN,pmqy.

We propose two different control variates ΞN based on optimal quantizers either of log-normal
random variables or of Gaussian random variables.
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1. The control variate, denoted Ξ
N , is defined by, @k “ 1, . . . , d

Ξ
N
k :“ fpErS1

T s, . . . , S
k
T , . . . ,ErS

d
T sq ´ E

“

fpErS1
T s, . . . ,

pSk,NT , . . . ,ErSdT sq
‰

where ppSk,NT qk“1,...,d are optimal quantizers of cardinality N of SkT . In that case, the Monte

Carlo estimator is denoted pI
λ,N

M .

2. The control variate, denoted rΞN , is using another representation of the payoff (4.7), using
d Gaussian random variables i.i.d in place of the assets SkT because the d underlying corre-
lated Brownian Motions can be expressed from d rescaled independent Gaussian random
variables, thus we define ϕ our new representation for the payoff as

ϕpZ1, . . . , Zdq :“ fpS1
T , . . . , S

d
T q

where pZkqk“1,...,d are i.i.d Gaussian random variables. Now, defining our control variates
with the function ϕ, @k “ 1, . . . , d

rΞNk :“ ϕp0, . . . , Zk, . . . , 0q ´ E
“

ϕp0, . . . , pZN , . . . , 0q
‰

where p pZN qk“1,...,d is an optimal quantizer of Z „ N p0, 1q. In that case, the Monte Carlo

estimator is denoted p

rIλ,NM .

The Black-Scholes parameters considered are

si0 “ 100, r “ 2%, σi “
i

d` 1
, ρ “ 0.5,

and the specifications of the product are

K “ 100, αi “
2i

dpd` 1q
, T “ 1

such that
ř

αi “ 1. The benchmarks used for the computation of the MSE has been com-
puted using a Monte Carlo estimator with control variate without quantization where the term
řd
k“1ErXks is computed using Black-Scholes Call pricing closed formulas. The Mean Squared

Error of an estimator I is computed using the formula

MSEpIq “
1

n

n
ÿ

i“1

pIpiq ´ I0q
2

where pIpiqqi“1,...,n are n independent copies of I.
Table 1 compares three different types of Monte Carlo estimators: the standard (Crude)

Monte Carlo estimator pIM , our novel Monte Carlo estimator with control variate based on
optimal quantizers of Gaussian random variables p

rIλ,NM and another one with optimal quantizers

of log-normal random variables pI
λ,N

M . The notation n corresponds to the number of Monte Carlo
used for computing the MSE, M is the size of each Monte Carlo and N is the size of the optimal
quantizers. The prices of reference for each d are

• for d “ 2: 14.2589 p˘0.0010q,

• for d “ 3: 14.1618 p˘0.0015q,

• for d “ 5: 13.9005 p˘0.0022q,
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N “ 20 N “ 200

d MC Estimator Mean (˘1.96ˆstd) MSE Mean (˘1.96ˆstd) MSE

d “ 2
Crude 14.2695 p˘0.0662q 0.1450 14.2695 p˘0.0662q 0.1450
CV Gaussian 14.1017 p˘0.0399q 0.0774 14.2773 p˘0.0399q 0.0530
CV Log-Normal 14.2351 p˘0.0078q 0.0026 14.2614 p˘0.0078q 0.0020

d “ 3
Crude MC 14.1770 p˘0.0671q 0.1492 14.1770 p˘0.0671q 0.1492
CV Gaussian 14.0336 p˘0.0451q 0.0837 14.1685 p˘0.0451q 0.0673
CV Log-Normal 14.1479 p˘0.0104q 0.0038 14.1674 p˘0.0104q 0.0036

d “ 5
Crude MC 13.8803 p˘0.0720q 0.1717 13.8803 p˘0.0720q 0.1717
CV Gaussian 13.6686 p˘0.0562q 0.1580 13.8883 p˘0.0562q 0.1044
CV Log-Normal 13.8797 p˘0.0151q 0.0080 13.9008 p˘0.0151q 0.0076

d “ 10
Crude MC 13.5046 p˘0.0599q 0.1186 13.5046 p˘0.0599q 0.1186
CV Gaussian 13.2429 p˘0.0515q 0.1527 13.5113 p˘0.0515q 0.0878
CV Log-Normal 13.4221 p˘0.0194q 0.0181 13.4983 p˘0.0194q 0.0124

Table 1: n “ 128, M “ 1e4

• for d “ 10: 13.4979 p˘0.0034q.

One remarks in Table 1 the efficiency of the optimal quantization-based variance reduction
method. The variance, in the best cases, can be divided by almost 100 when using the optimal
quantizers of Log-Normal random variables. Figure 5 shows the effect of N (for d “ 3), the size
the optimal quantizers, on the bias. The same seeds are used for all the Monte Carlo estimator,
the only thing varying is N .
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Figure 5: n “ 128, M “ 1e4, d “ 3.
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